Университет Иннополис и KAIST: Робототехнические системы и манипуляторы на базе TSA (twisted string actuators)

Продукт
Разработчики: Университет Иннополис, KAIST, Korea Advanced Institute of Science and Technology (Корейский институт передовых технологий)
Дата последнего релиза: 2020/04/16
Технологии: Робототехника

2020: Анонс разработки робототехнических систем и манипуляторов на базе TSA

16 апреля 2020 года стало известно о том, что учёные Университета Иннополис и корейского университета KAIST создадут робототехнические системы и манипуляторы, состоящие из звеньев параллельного типа на основе скрученных нитей — twisted string actuators, TSA.

«Университет Иннополис» и KAIST разрабатывают роботов с грузоподъёмностью в 2-3 выше аналогов

Как сообщалось, это позволит повысить полезную нагрузку подобных систем и точность управления ими. В приводах на основе TSA нить с одной стороны закреплена на двигателе, а второй её конец присоединён к рабочему органу или механизму, который перемещает полезную нагрузку. В результате закручивания нити сокращаются и приводят в движение рабочий орган.

«
Данный тип приводов имеет ряд преимуществ, которые делают его привлекательным при разработке и проектировании всевозможных робототехнических систем — легкий вес, высокие развиваемые усилия, точность, гибкость при проектировании и установке.

рассказал Игорь Гапонов, руководитель Лаборатории мехатроники, управления и прототипирования, входящей в состав Центра компетенций НТИ по направлению «Технологии компонентов робототехники и мехатроники» на базе Университета Иннополис
»

Как объясняет специалист российского ИТ-вуза, большинство роботизированных рук с последовательной структурой, использующие традиционные приводы, обладают сравнительно низкой грузоподъёмностью. Приводы в таких устройствах обычно устанавливаются в сочленениях (суставах), и поэтому «плечо» робота вынуждено перемещать на себе остальные 5—6 приводов. В итоге манипулятор весом, например, 500 кг способен поднять не более 50 кг полезной нагрузки. Однако вес таких манипуляторов можно существенно уменьшить с сохранением грузоподъёмности благодаря применению обновленных приводов и звеньев на базе TSA.Рынок ИТ-услуг в России: оценки, тренды, крупнейшие участники. Обзор и рейтинг TAdviser 298.7 т

Другой популярный класс промышленных манипуляторов, где планируется применять TSA — устройства параллельного типа с большим рабочим диапазоном, также называемые дельта-роботами. У них высокая скорость, но сравнительно низкая грузоподъёмность, из-за чего на подобные манипуляторы нельзя устанавливать многофункциональные роботизированные схваты без серьёзного ухудшения производительности. Однако низкий вес TSA позволяет создавать на их основе более гибкие и лёгкие роботизированные схваты, например, двигатель в данном приводе можно устанавливать удалённо от схвата (на основании робота), и таким образом масса кисти, закрепляемой на робототехнической руке, составит не более 200—300 граммов, в отличие от большинства коммерческих аналогов, вес которых составляет 0,5 кг и более.

Работа над проектом началась в марте 2020 года и продлится до конца 2021 года. Совместная команда состоит из 13 человек. От Университета Иннополис проектом руководит Игорь Гапонов, от KAIST — профессор Джи-Хван Рю. Российский ИТ-вуз отвечает за разработку математического аппарата и синтез структур на основе TSA. К середине второго года учёные планируют завершить разработку системы управления подобными устройствами и провести эксперименты на синтезированных механизмах. Сотрудники KAIST сосредоточатся на разработке адаптивной системы управления и разработают систему на основе пассивности. Изготовление опытных образцов и эксперименты учёные двух стран проведут совместно.

За 2 года учёные планируют описать теоретические основы моделирования статики и динамики параллельных механизмов и роботов на основе TSA, разработать методы получения информации о внешних воздействиях на робота со стороны окружающей среды без специализированных датчиков силы, классифицировать конструкции подобных роботов и описание их свойств с учётом применения TSA, разработать методы автоматизированного синтеза систем с желаемыми характеристиками, синтез опытных образцов роботов с оптимизированной структурой, разработать математический аппарат для автоматического планирования и оптимизации траектории движения звеньев и роботов, а также разработать адаптивные системы управления отдельными приводами на скрученных нитях и устройствах на их основе.

По словам сотрудников Университета Иннополис, на основе разработанных и сконструированных модулей получится спроектировать устройства и системы, которым найдут применение практически во всех областях современной техники: промышленные манипуляторы и станки, человеко-машинные интерфейсы, медицинская робототехника, экзоскелеты и др. Отдельные модули на основе TSA можно внедрять в мобильные роботы и любые другие системы, где необходимы линейные приводы.

Робототехника





Подрядчики-лидеры по количеству проектов

За всю историю
2021 год
2022 год
2023 год
Текущий год

  Promobot (Промобот) (31)
  Cognitive Pilot (Когнитив Роботикс) (14)
  Яндекс (Yandex) (11)
  Nvidia (Нвидиа) (11)
  Cognitive Technologies (Когнитивные технологии) (10)
  Другие (460)

  ABB Group (7)
  Promobot (Промобот) (4)
  Ростелеком (3)
  АББ Россия (ABB) (3)
  Ronavi Robotics, Ронави Роботикс (ранее Ронави логистические системы) (2)
  Другие (59)

  Mains Lab (Мэйнс Лаборатория) (2)
  Яндекс (Yandex) (2)
  Московский центр инновационных технологий в здравоохранении (2)
  Гриндата (GreenData) (1)
  Cognitive Technologies (Когнитивные технологии) (1)
  Другие (46)

  Департамент информационных технологий Москвы (ДИТ) (3)
  Инфосистемы Джет (2)
  Fora Robotics (Фора Роботикс) (2)
  Яндекс (Yandex) (2)
  Яндекс.Облако (Yandex.Cloud) (2)
  Другие (46)

  Университет Иннополис (2)
  VizorLabs (Визорлабс) (1)
  БизнесАвтоматика НПЦ (1)
  Геоскан (Geoscan) (1)
  Группа компаний ЦРТ (Центр речевых технологий) (1)
  Другие (14)

Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров

За всю историю
2021 год
2022 год
2023 год
Текущий год

  Promobot (Промобот) (9, 32)
  ABB Group (8, 23)
  Cognitive Pilot (Когнитив Роботикс) (2, 21)
  Cognitive Technologies (Когнитивные технологии) (1, 21)
  Nvidia (Нвидиа) (3, 10)
  Другие (521, 133)

  ABB Group (2, 11)
  Promobot (Промобот) (2, 4)
  Cognitive Technologies (Когнитивные технологии) (1, 2)
  Cognitive Pilot (Когнитив Роботикс) (1, 2)
  Gaskar Group (Гаскар Интеграция) (1, 2)
  Другие (10, 11)

  Эфко ГК (2, 1)
  Транспорт будущего (2, 1)
  Бирюч-НТ Инновационный Центр (2, 1)
  РОББО (ранее ScratchDuino, СкретчДуино) (1, 1)
  3D Bioprinting Solutions (3Д Биопринтинг Солюшенс) (1, 1)
  Другие (13, 13)

  Fora Robotics (Фора Роботикс) (1, 2)
  3D Bioprinting Solutions (3Д Биопринтинг Солюшенс) (1, 1)
  Dobot (Shenzhen Yuejiang Technology) (1, 1)
  Intuitive Surgical (1, 1)
  НИТУ МИСиС (Национальный исследовательский технологический университет) (1, 1)
  Другие (5, 5)

  КиберСклад (1, 1)
  Другие (0, 0)

Распределение систем по количеству проектов, не включая партнерские решения

За всю историю
2021 год
2022 год
2023 год
Текущий год

  Promobot - 26
  Cognitive Agro Pilot Система автоматического вождения - 21
  ABB IRB Промышленные роботы - 19
  Nvidia Drive AI-платформа для самоуправляемых автомобилей - 10
  Da Vinci (робот-хирург) - 9
  Другие 119

  ABB IRB Промышленные роботы - 8
  YuMi (Мобильный коллаборативный робот) - 4
  Promobot - 4
  Ronavi Robotics: H-серия Роботы для обслуживания складов - 2
  Gaskar Group Hive Автономные дронопорты - 2
  Другие 11

  Cognitive Agro Pilot Система автоматического вождения - 1
  Hi-Fly Cargo - 1
  ABB IRB Промышленные роботы - 1
  Эфко: Hi-Fly Taxi Аэротакси - 1
  Лаборатория знаний: Neuro Angel - 1
  Другие 9

  For-1 Антропоморфный робот - 2
  Dobot CR-серия Коллаборативные роботы - 1
  Aripix A1 Робот-манипулятор - 1
  Robotech: RP-серия Роботы-паллетайзеры - 1
  Яндекс: Складские роботы - 1
  Другие 2

  Роботы КиберСклад - 1
  Другие 0