Как «ВинЛаб» приводит в порядок данные о товарах и экономит миллионы рублей с помощью робота DaCo
Заказчики: ВинЛаб Продукт: CSI: Set Robot DaCo (Data Consistency) Дата проекта: 2020/11 — 2021/03
|
Технология: Data Quality - Качество данных
Технология: MDM - Master Data Management - Управление основными мастер-данными
Технология: RPA - Роботизированная автоматизация процессов
|
Содержание |
Сеть магазинов «ВинЛаб» внедрила роботизированную систему консистентности данных — Set Robot DaCo контролирует качество данных во внутренних системах ритейлера, устраняет ошибки сам или направляет их в службу поддержки.
С помощью DaCo «ВинЛаб» на 90% сократил финансовые потери из-за ошибок данных на кассе, сократил упущенную прибыль в 2 раза за первые два месяца, снизил на 90% трудозатраты сотрудников на решение вопросов по некорректным данным, ускорил работу касс на 5%. Продукт, не имеющий аналогов на рынке, предложила компания CSI.
О компании
Супермаркеты напитков «ВинЛаб» — это 660 магазинов по всей России: от Санкт-Петербурга до Южно-Сахалинска. Специализация — алкогольные и безалкогольные напитки во всех популярных категориях с акцентом на высокое качество продукции.
Входит в тройку специализированных сетей страны. В 2020 году в рамках премии Retail Week Awards сеть супермаркетов «Винлаб» признана победителем в номинации «Самая быстрорастущая сеть food».
Сеть «ВинЛаб» входит в структуру BELUGA GROUP — крупнейшей алкогольной компании в России, которая ведет свою историю с 1999 года.Как Threat Intelligence помогает бизнесу бороться с таргетированными кибератаками
BELUGA GROUP выпускает высококачественные продукты на 6 собственных заводах и винодельне «Поместье Голубицкое», некоторые из которых обладают вековыми традициями производства.
Кроме того, BELUGA GROUP — один из импортеров крепкого алкоголя в стране. Среди давних партнеров – такие мировые гранды как William Grant & Sons и французский коньячный дом Camus. Компания также представляет в России вина от знаковых производителей из Франции, Италии, Испании, Германии, США, ЮАР и других стран, среди которых Torres, Masi Agricola, Faustino, Cono Sur, Calvet, Piccini, Barefoot.
Сайт компании: winelab.ru.
Предпосылки проекта
Решение внедрить роботизированную систему консистентности данных назрело в связи с общей необходимостью снизить издержки, учитывая рост сети и объемы замены оборудования на кассах и серверах. После замен часто возникают неконсистентные данные — например, остаются лишние данные при переносе кассы с прошлой торговой точки или отсутствуют актуальные данные для новой. По данным на май 2021 года, в сети 1250 касс.
Ритейлеру нужно было решить несколько задач
- Снизить трудозатраты ИТ на обслуживание кассовых узлов, сократить взаимодействие персонала магазина с ИТ-службой из-за ошибок в данных
Решение проблем с товарным справочником занимало у сотрудников магазина много времени. Например, на кассе неверная цена, цена отсутствует или товар заблокирован — нужно описать и сформулировать задачу, контролировать её статус, проверять и подтверждать результаты, не говоря уже о ситуации, когда от ИТ появляются уточнения и начинается диалог. Со стороны ИТ эта поддержка также требовала ресурсов. - Сократить финансовые потери, вызванные ошибками в данных
Прямые убытки возникают из-за продаж товара по ошибочно низкой цене, когда ритейлер недополучает прибыль. Косвенные — из-за продаж по завышенной цене, когда клиенты теряют лояльность и начинается отток покупателей.
На начало проекта связанные с этим потери специалисты «ВинЛаб» и CSI оценили в 500 тысяч рублей в месяц на каждую 1000 касс. - Устранить проблемы с простоем товара, который невозможно продать из-за ошибки или недозагрузки данных
Отделы, отвечающие за подготовку товара на стороне ERP («Ценообразование», «Номенклатура», «Товарная логистика») могут по какой-то причине не назначить необходимые атрибуты товара (цену, штрихкод), вовремя не обновить цену по истечении срока, не назначить товар для конкретной торговой точки или доставить его на точку ошибочно. В результате покупатель не может его купить. Быстрой обратной связи об ошибках не было из-за несовершенства интеграционных процессов.
Упущенная прибыль сети из-за подобных ситуаций была оценена в 2 млн рублей в месяц. Расчёт основан на анализе всех ситуаций, когда товар из-за ошибки данных не удалось продать одному покупателю, но товар остался в сети и после устранения ошибки был продан другому покупателю. Длительный разбор ситуаций сотрудниками лишь увеличивал потери ритейлера. - Обеспечить возможность быстро оценивать состояние данных по всем узлам Retail.
- Обеспечить контроль учётных записей кассиров — хранить на кассе только актуальный справочник.
Решение — новый сервис Set Robot DaCo
Сеть «ВинЛаб» несколько лет сотрудничает с компанией CSI — работает в кассовой системе Set Retail, использует систему контроля кассовых операций Set Prisma.
Специалисты CSI для решения обозначенных выше задач предложили «ВинЛаб» один из сервисов экосистемы Set — робот DaCo (сокращённо от Data Consistency, что значит «консистентность» или «согласованность» данных).
Робот сверяет данные в системах ритейлера, выявляет и устраняет расхождения в ценах, штрихкодах, сроках, поддерживая информацию о товарах в актуальном состоянии.
Что делает DaCo в сети «ВинЛаб»
К системе подключены все кассы сети.
- Сверяет данные по всем узлам — участникам процесса торговли,
- автоматически выравнивает все проверяемые типы данных,
- отслеживает простой товара на полке без возможности его продажи,
- отслеживает доставку данных по продажам до ERP-системы с автоматическим исправлением и формированием отчета на конец дня.
Какие данные контролирует: товары, штрихкоды, цены, МРЦ, алко-коды, карты клиентов, клиенты, кассиры, продажи.
Результаты проекта
- Исключены 95% инцидентов, связанных с отсутствием товара на кассе или неверной ценой.
- На 90% снизились убытки за счет автоматического выявления и устранения проблем в консистентности данных. Этот результат превысил поставленную в начале проекта цель почти в два раза.
- За 2 месяца в 2 раза снизилась упущенная прибыль — с 1,7 млн рублей в январе до 700 тысяч рублей на начало марта по кейсу «простой товара на полке».
- На 90% сократились трудозатраты персонала магазина и ИТ-специалистов по вопросам некорректных данных в товарном справочнике. Вне зависимости от текущих нагрузок, робот всегда точно определит проблему и доставит ее в целевую группу в автоматическом режиме.
- На 5% ускорилась работа интерфейса кассы и сервера, в том числе за счёт возможности хранить только рабочий справочник данных на всех узлах.
На кассах зачастую хранятся данные товаров не только активной матрицы, но и пассивной — товары, выведенные из оборота, или, наоборот, запланированные. Это замедляет кассу и влияет на производительность серверной части: замедляет транспорт, увеличивает время обслуживания баз данных и время восстановления при отказе. - Доставка данных о продажах в ERP-систему ускорилась в разы — с 1,5 часов до 15 минут.
- Система контроля состояния данных охватывает все узлы-участники процесса — это позволяет эффективно применять ИТ-ресурсы, а также реализовывать планы по росту числа магазинов без увеличения ФОТ ИТ-персонала за счёт возможностей робота.
Ритейлер решил все поставленные перед проектом задачи: снизил трудозатраты ИТ и сотрудников магазина за счёт автоматизации, усилил контроль ценообразования, устранил существенные финансовые потери. Каждый участник корпоративных процессов теперь оперативно получает актуальные и рабочие данные, собранные роботом. ИТ-службе доступны удобные онлайн-отчёты.
Данные — это основной актив любой компании. В современном мире недооценка их кондиции и консистентности может нести серьёзную угрозу бизнесу. Оценив собственные данные операционных узлов компании и трудозатраты по поддержанию их целостности и консистентности, мы пришли к выводу, что самое эффективное решение — передать заботу о них роботу! Перед внедрением DaCo мы с коллегами из CSI составили KPI проекта — и перевыполнили их. Сократили 95% инцидентов с ошибками данных и, как следствие, 90% финансовых потерь на кассах. За 2 месяца на миллион рублей сократили упущенную прибыль, высвободили время персонала в магазине и в ИТ-службе. Ускорилась работа интерфейса касс и обмен данными между системами. Это не первый продукт из экосистемы Set, который мы используем, и который подтвердил свою эффективность,сказал Евгений Шингарев, ИТ-директор сети «ВинЛаб».
|
Ход проекта
Внедрение в сети «Винлаб» было одним из первых проектов для DaCo. Благодаря сложившимся доверительным отношениям с нашей командой и готовности со стороны ИТ клиента повышать эффективность с новыми технологиями, мы тщательно проработали и применили все преимущества роботизации работы с данными. Рады, что «Винлаб» получил такие результаты, ведь это не только экономия, но и порядок в процессах. Сегодня проект внедрения DaCo занимает 1-2 недели — мы будем рады помочь ритейлерам решить их задачи,отметил Ефим Бураков, руководитель проекта, CSI.
|
2020 март — «ВинЛаб» поддержал идею проекта и стал технологическим партнёром CSI в его реализации.
2020, май — старт проекта, подготовка и настройка системы.
2020, сентябрь — начало эксплуатации во всей сети.
Планы
Ритейлер планирует дальше применять и развивать возможности сервиса:
- Использовать ERP-систему как эталон данных при импорте. На первых этапах использования за эталон принимается внутренний центральный сервер Set Retail. С ERP робот сможет своевременно определять проблему и информировать о поступлении данных, которые не соответствуют бизнес-правилам — например, без цены или с запретом на продажу.
- Контролировать процессы ценообразования и привязку атрибутов к товару внутри ERP.
- Развивать функциональность целевых событий для Service Desk сети — например, чтобы своевременно расценить товар.
- Отслеживать в онлайн-режиме доставку данных о продажах с каждой кассы до внутренней системы учета. Задачи доставляются туда, где они будут решены: если проблема техническая - она отправится в SD клиента или CSI. Если с ценообразованием - в отдел ценообразования клиента. Методы доставки: чаты, CRM-система клиента, почта.
- Подключить к сервису платформу интернет-торговли.