Разработчики: | Яндекс (Yandex) |
Дата премьеры системы: | 2017/07/18 |
Технологии: | Средства разработки приложений |
CatBoost - метод машинного обучения.
18 июля 2017 года компания Яндекс сообщила о создании метода машинного обучения CatBoost. Он предназначен для обучения моделей на разнородных данных.
В основу берутся сведения о местонахождении пользователя, история операций и тип устройства. Библиотека машинного обучения CatBoost опубликована в открытом доступе, её могут использовать все желающие.
CatBoost заявлена, как наследник метода машинного обучения Матрикcнет - он применяется почти во всех сервисах Яндекса. Как и Матрикснет, CatBoost использует механизм градиентного бустинга (англ. boosting - улучшение): он подходит для работы с разнородными данными.
CatBoost учитывает модели числовых и нечисловых данных - виды облаков или типы зданий. Прежде эти данные переводились на язык цифр, и это могло поменять их суть, повлиять на точность работы модели. Теперь их можно использовать в первоначальном виде. Это помогает CatBoost демонстрировать повышенное качество обучения. Его можно применять в разных сферах - от банковской до производственной.
Яндекс много лет занимается машинным обучением, и CatBoost создавали лучшие специалисты в этой области. Выкладывая библиотеку CatBoost в открытый доступ, мы хотим внести свой вклад в развитие машинного обучения. Надо сказать, что CatBoost — российский метод машинного обучения, который стал доступен в open sourсe. Надеемся, что сообщество специалистов оценит его по достоинству и поможет сделать ещё лучше. Михаил Биленко, руководитель управления машинного интеллекта и исследований Яндекса |
Метод протестирован на сервисах Яндекса. В рамках эксперимента он применялся для улучшения результатов поиска, ранжирования ленты рекомендаций Яндекс.Дзен и для расчёта прогноза погоды в технологии Метеум. В дальнейшем CatBoost будет работать и на других сервисах. Его использует команда Yandex Data Factory — в своих решениях для промышленности, в частности для оптимизации расхода сырья и предсказания дефектов. Европейский центр ядерных исследований (ЦЕРН) внедрил CatBoost: центр использует продукт для объединения данных, полученных с разных частей детектора LHCb.Метавселенная ВДНХ
Для работы с CatBoost достаточно установить его на компьютер. Библиотека поддерживает операционные системы Linux, Windows и macOS и доступна на языках программирования Python и R.
Загрузка CatBoost доступна на GitHub.
Робототехника
- Роботы (робототехника)
- Робототехника (мировой рынок)
- Обзор: Российский рынок промышленной робототехники 2019
- Карта российского рынка промышленной робототехники
- Промышленные роботы в России
- Каталог систем и проектов Роботы Промышленные
- Топ-30 интеграторов промышленных роботов в России
- Карта российского рынка промышленной робототехники: 4 ключевых сегмента, 170 компаний
- Технологические тенденции развития промышленных роботов
- В промышленности, медицине, боевые (Кибервойны)
- Сервисные роботы
- Каталог систем и проектов Роботы Сервисные
- Collaborative robot, cobot (Коллаборативный робот, кобот)
- IoT - IIoT - Цифровой двойник (Digital Twin)
- Компьютерное зрение (машинное зрение)
- Компьютерное зрение: технологии, рынок, перспективы
- Как роботы заменяют людей
- Секс-роботы
- Роботы-пылесосы
- Искусственный интеллект (ИИ, Artificial intelligence, AI)
- Обзор: Искусственный интеллект 2018
- Искусственный интеллект (рынок России)
- Искусственный интеллект (мировой рынок)
- Искусственный интеллект (рынок Украины)
- В банках, медицине, радиологии, ритейле, ВПК, производственной сфере, образовании, Автопилот, транспорте, логистике, спорте, СМИ и литература, видео (DeepFake, FakeApp), музыке
- Национальная стратегия развития искусственного интеллекта
- Национальная Ассоциация участников рынка робототехники (НАУРР)
- Российская ассоциация искусственного интеллекта
- Национальный центр развития технологий и базовых элементов робототехники
- Международный Центр по робототехнике (IRC) на базе НИТУ МИСиС
- Машинное обучение, Вредоносное машинное обучение, Разметка данных (data labeling)
- RPA - Роботизированная автоматизация процессов
- Видеоаналитика (машинное зрение)
- Машинный интеллект
- Когнитивный компьютинг
- Наука о данных (Data Science)
- DataLake (Озеро данных)
- BigData
- Нейросети
- Чатботы
- Умные колонки Голосовые помощники
- Безэкипажное судовождение (БЭС)
- Автопилот (беспилотный автомобиль)
- Беспилотные грузовики
- Беспилотные грузовики в России
- В мире и России
- Летающие автомобили
- Электромобили
Подрядчики-лидеры по количеству проектов
Солар (ранее Ростелеком-Солар) (46)
Финансовые Информационные Системы (ФИС, FIS, Финсофт) (15)
Форсайт (11)
Axiom JDK (БеллСофт) ранее Bellsoft (10)
Бипиум (Bpium) (10)
Другие (387)
Солар (ранее Ростелеком-Солар) (8)
Финансовые Информационные Системы (ФИС, FIS, Финсофт) (4)
Консом групп, Konsom Group (КонсОМ СКС) (2)
ЛАНИТ - Би Пи Эм (Lanit BPM) (2)
IFellow (АйФэлл) (2)
Другие (30)
Солар (ранее Ростелеком-Солар) (10)
Banks Soft Systems, BSS (Бэнкс Софт Системс, БСС) (3)
Форсайт (3)
Cloud.ru (Облачные технологии) ранее SberCloud (2)
КРИТ (KRIT) (2)
Другие (13)
Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров
Солар (ранее Ростелеком-Солар) (2, 48)
Microsoft (41, 47)
Oracle (49, 26)
Hyperledger (Open Ledger Project) (1, 23)
IBM (33, 18)
Другие (588, 302)
Солар (ранее Ростелеком-Солар) (1, 8)
Финансовые Информационные Системы (ФИС, FIS, Финсофт) (1, 4)
Microsoft (4, 3)
Oracle (2, 3)
SAP SE (2, 2)
Другие (16, 19)
Солар (ранее Ростелеком-Солар) (1, 11)
Форсайт (1, 3)
Banks Soft Systems, BSS (Бэнкс Софт Системс, БСС) (1, 3)
Cloud.ru (Облачные технологии) ранее SberCloud (1, 2)
Сбербанк (1, 2)
Другие (9, 9)
Солар (ранее Ростелеком-Солар) (1, 6)
Unlimited Production (Анлимитед Продакшен, eXpress) (1, 6)
МТС Exolve (Межрегиональный ТранзитТелеком, МТТ) (1, 4)
Мобильные ТелеСистемы (МТС) (1, 4)
SL Soft (СЛ Софт) (1, 3)
Другие (14, 24)
Мобильные ТелеСистемы (МТС) (2, 3)
Солар (ранее Ростелеком-Солар) (1, 3)
Unlimited Production (Анлимитед Продакшен, eXpress) (1, 3)
МТС Exolve (Межрегиональный ТранзитТелеком, МТТ) (1, 2)
Оператор Газпром ИД (ГИД) (1, 1)
Другие (11, 11)
Распределение систем по количеству проектов, не включая партнерские решения
Solar appScreener (ранее Solar inCode) - 48
Hyperledger Fabric - 23
Windows Azure - 20
FIS Platform - 15
Форсайт. Мобильная платформа (ранее HyperHive) - 12
Другие 322
Solar appScreener (ранее Solar inCode) - 8
FIS Platform - 4
Java - 2
Турбо X - 2
Парадокс: MES Builder - 2
Другие 22
Solar appScreener (ранее Solar inCode) - 11
Форсайт. Мобильная платформа (ранее HyperHive) - 3
BSS Digital2Go - 3
Cloud ML Space - 2
Axiom JDK (ранее Liberica JDK до 2022) - 1
Другие 8