Заказчики: Ariston Thermo Group (Аристон Термо Русь) Электротехника и микроэлектроника Подрядчики: Nord Clan (Норд Клан) Продукт: Nord Clan: ML SenseНа базе: Искусственный интеллект (ИИ, Artificial intelligence, AI) Дата проекта: 2023/10 — 2024/02
|
Технология: Системы видеонаблюдения
Технология: Системы видеоаналитики
|
Содержание |
2024: Машинное зрение для контроля качества бытовой техники: внедрение на заводе Ariston
Завод электрических водонагревателей Ariston во Всеволожске выпускает более 600 тысяч приборов в год. Иногда на производстве сталкиваются с проблемой: специалисты не замечают мелкие дефекты на трубках водонагревателей. Чтобы не допустить выпуск бракованной продукции, было решено применить технологию машинного зрения.
Задача от Ariston: автоматическое выявление брака в трубках забора горячей воды водонагревателя с помощью технологии машинного зрения.
Особенности требований заказчика к системе контроля дефектов
- Конвейер должен автоматически останавливаться, как только система обнаружит дефект: отсутствие вставки в трубке водонагревателей или заусенцы. При этом должна срабатывать звуковая и световая сигнализация.
- В зависимости от модели, расстояние между трубками и высота водонагревателя на конвейере может меняться. И водонагреватели могут быть радиально смещены на конвейере.
- Задачу решить под ключ: сконструировать мачты крепления и установить необходимое оборудование: камеры машинного зрения с подсветкой, серверное оборудование с монитором, светозвуковые колонны для уведомления оператора о дефектах.
Этапы автоматизации контроля качества бытовой техники
1. Тестовое видео на производстве, чтобы определить точки контроля для установки/оборудования. Важно было оценить факторы, которые влияют на работу системы ML Sense — уровень освещения, наличие вибраций, радиальное смещение водонагревателей на конвейере, разницу по высоте между водонагревателями и предполагаемой камерой.
2. Подбор камер, которые справятся с поиском дефектов на трубках водонагревателей. Подбор осветительных приборов со светодиодами высокой интенсивности, чтобы получать четкие снимки высокой контрастности для распознавания нейросетью.Метавселенная ВДНХ
3. Тестирование системы контроля качества трубок водонагревателей ML Sense в собственной лаборатории.
4. Моделирование виртуальной 3D сцены на основе замеров с производственной линии. Расчет оптимального расстояния для установки камер, светильника и подготовка чертежей мачты для крепления оборудования. Изготовление конструкции.
5. Обучение нейросети на распознавание типовых дефектов трубок. Для этого собрали датасет из фотографий, где каждый вид дефектов размечен и классифицирован: на этой трубке есть вставка, на этой есть заусенец.
Для быстрого оповещения сотрудников о дефектах внедрили коробочную систему оповещения. Присвоили дефектам три класса оповещения: красный — отсутствие вставки на трубке, желтый — заусенец на трубке, зеленый — бак без дефектов. Как только система «видит» дефект, срабатывает звуковой сигнал и конвейер останавливается. Контролер может снять с конвейера бак, у которого отсутствует вставка на трубке, или отрезать заусенец.
Произвели монтаж оборудования на заводе Ariston во Всеволожске. Установили мачты, закрепили камеры, установили ПО на пост контроля, обучили персонал работать с системой ML Sense. Завершили пусконаладку.
Уже на производстве в ходе работы выявили новый вид втулки — металлическая. В техзадании заказчика этого вида втулки не было, поэтому мы изначально обучали систему только на типовой эмалированной втулке. Но поскольку мы всегда за то, чтобы решение работало и приносило пользу, то доработали систему и дообучили нейросеть.
Результат внедрения
Система в 100% случаев видит дефект, оповещает оператора о том, какой вид брака обнаружен, звуковым и световым сигналом, останавливает конвейер.
Оператор конвейерной линии избавлен от рутинного труда и работает быстрее. Сотруднику остается только снять дефектную продукцию с конвейера, отправить ее на доработку, либо исправить дефект вручную.
В результате повышен экономический эффект — больше не нужно рисковать рублем за рекламацию бракованной продукции и репутацией компании из-за человеческого фактора.