Сбербанк Auto ML

Продукт
Название базовой системы (платформы): Искусственный интеллект (ИИ, Artificial intelligence, AI)
Разработчики: Сбербанк России
Дата премьеры системы: 2019/02/14
Отрасли: Финансовые услуги, инвестиции и аудит
Технологии: Data Mining

Auto ML — система алгоритмов, которая быстро и самостоятельно создает прикладные решения на основе моделей машинного обучения.

2019: Разработка и тестирование модели Auto ML

Сбербанк разработал модель машинного обучения Auto ML. Об этом 14 февраля 2019 года заявил заместитель Председателя Правления Сбербанка Анатолий Попов. Как он пояснил, Auto ML представляет собой алгоритм, который умеет создавать другие модели. А они, в свою очередь, уже решают прикладные задачи — например, прогнозируют платежеспособность клиента при выдаче кредита или помогают отделять законопослушных клиентов от нарушителей.

Сбербанк разработал алгоритм, который работает как дата-сайентист

Как подчеркнул Анатолий Попов, алгоритм позволяет оптимизировать один из важных шагов создания применяемой в бизнесе модели машинного обучения, а именно — создание baseline-модели (первой версии модели, которая затем развивается уже с участием человека). Качество baseline-моделей созданных алгоритмом Auto ML сопоставимо с качеством модели, создаваемой в ручную. При этом скорость работы алгоритма в 10-15 раз превосходит скорость работы человека, заверил зампредседателя Правления банка.

Разработка уже была протестирована Сбербанком в рамках пилотного проекта в январе 2019 года: алгоритмы Auto ML были применены для создания нескольких baseline-моделей (первых версий) класса Next BestAction (таргетирование кампаний продаж).

По мнению экспертов банка, полученные результаты доказывают возможность использования технологии автоматического моделирования для быстрого формирования базовых моделей обработки данных и запуска кампаний продаж корпоративно-инвестиционного бизнеса Сбербанка.

«
Одна из возможностей для повышения эффективности всех бизнес-процессов в банке — внедрение искусственного интеллекта. Однако создание десятков тысяч моделей, чтобы покрыть все аспекты деятельности, является практически нереальной задачей, если для создания и внедрения моделей применять только ручной труд дата-сайентистов и разработчиков. Поэтому мы внедряем у себя один из самых современных в мире подходов к работе с моделями машинного обучения — Auto ML. Систему алгоритмов, которая быстро и самостоятельно создает прикладные решения на основе моделей машинного обучения, — заключил Анатолий Попов, заместитель Председателя Правления Сбербанка.
»



СМ. ТАКЖЕ (1)


Распределение вендоров по количеству проектов внедрений (систем, проектов) с учётом партнёров

За всю историю
2016 год
2017 год
2018 год

  Dell EMC (2, 2)
  IBM (1, 2)
  Центр Речевых Технологий (ЦРТ) (1, 1)
  Pentaho (1, 1)
  OSIsoft (1, 1)
  Другие (0, 0)

Распределение базовых систем по количеству проектов, включая партнерские решения

За всю историю
2016 год
2017 год
2018 год

  IBM SPSS Decision Management - 2 (2, 0)
  Pentaho BI - 2 (2, 0)
  Flextera BI - 2 (2, 0)
  Polymatica Аналитическая платформа - 2 (2, 0)
  Deductor - 1 (1, 0)
  Другие 0